

ENGLISH FOR **Mechatronics** I

Pia Orešković Ivana Grabar

Sveučilište Sjever Varaždin

IMPRESUM

Autori: Pia Orešković, dr. sc. Ivana Grabar

Recenzenti: Marija Miščančuk, dr. sc. Ivanka Rajh

Nakladnik: Sveučilište Sjever

Za nakladnika: prof. dr. sc. Marin Milković

Lektura: Izidora Radek

Tisak: Sveučilište Sjever, Centar za digitalno nakladništvo

Naklada: 100 primjeraka

Objavljivanje ove nastavne skripte odobrio je Senat Sveučilišta Sjever na IX. Sjednici u akademskoj godini 2023./2024. dana 25. ožujka 2024. temeljem Odluke o izdavačkoj djelatnosti. Klasa: 602-04/24-02/5 Urbroj: 2137-0336-09-24-10

Nijedan dio ove knjige ne smije se umnožavati niti na bilo koji način reproducirati bez nakladnikova pismenog odobrenja.

ISBN: 978-953-7986-66-7

Pia Orešković / Ivana Grabar

English for Mechatronics I Textbook

Varaždin, 2024

INTRODUCTION

English for Mechatronics I is the first book in a two-book series designed for students of the professional undergraduate study of Mechatronics at University North, as well as for all mechatronics engineers who want to expand their knowledge of the English language. In addition to authentic texts on the most modern technological achievements in the profession, the book also contains grammar units required for mastering the CEF level B1 of English.

The book is designed in such a way that the grammar and vocabulary related to the profession are studied through professional topics from the field of mechatronics, enabling students to communicate in real-life situations. The texts are accompanied by different types of tasks, which enable students to check their understanding of the English language in the mechatronics profession and upgrade the skills necessary for successful navigation in the labour market

The book is the result of many years of philological, methodical, and didactic experience of the authors, as well as extensive involvement in professional language courses.

Contents

1	N	Mechatronics engineering	1
2	E	Electronics	
	2.1	Types of EV batteries	9
	2.2	Production Management	
3	V	What are automated guided vehicles?	
	3.1	AGVs, AMRs and other types of automated vehicles	
4	S	Static electricity	
	4.1	Static build-up in manufacturing	
5	Ν	Nanotechnology	
6	A	Artificial muscles	
7	(Codes and Standards in Engineering	
8	S	Sensors in Mechatronics	
	8.1	BionicANTs	
9	(Grammar reference	
	9.1	Nouns	
	9.	9.1.1 Countable nouns	
	9.	9.1.2 Uncountable nouns	
	9.	9.1.3 Agreement between subject and verb	
	9.2	Perfect tenses	
	9.3	Past tenses	
	9.4	Future tenses	
10) (Glossary	
11	. F	References	

1 Mechatronics engineering

1) Have a look at the following words. Which one(s) do you think are part of mechatronics engineering? Cross the other words out.

automation, controlling, raw material, supply chain, database, robotics, prototypes, design, test, quality management, ISO¹

2) What is the Croatian term for each of the words in the box above?

automation	robotics
controlling	prototypes
raw material	design
supply chain	test
database	quality management

3) Have a look at the text below and add other key words to the box above.

Mechatronics is a high-tech field, and job applicants with a mechatronics engineering technology degree from an accredited program like the one offered at PennWest California are in demand. In fact, the Pennsylvania Department of Labor & Industry has identified mechatronics as a "high-priority" occupation with rapidly expanding job opportunities.

As more businesses advance their technologies and turn to sophisticated intelligent systems and robotics, mechatronics engineering will continue to grow in demand. Even manufacturing businesses considering a technology upgrade turn to mechatronics engineers in order to evaluate assembly line efficiency and costs.

4) The words provided in the box above are all nouns. Can these nouns be made plural?

¹ International Organization for Standardization

5) Underline the nouns in the following text. Can you form their respective plural or singular form?

Mechatronics Careers in Renewable Energy:

Pursue a career that makes civilization more sustainable. A bachelor's degree in mechatronics engineering technology from PennWest California will position you for high-impact jobs in solar power, wind energy, biofuel, hydropower and geothermal technologies. Renewable energy is a booming industry in which mechatronics graduates will find many opportunities to use their multidisciplinary engineering skills to help make exciting innovations, test and improve components used in wind turbines and solar panels, and more. Job titles may include safety coordinator, materials engineer and energy systems technician, among others.

According to investinganswers.com, the median salary for a materials engineer in wind power is \$83,190; in solar power, it is \$86,380. The salary for a windturbine installer starts at \$31,000 and increases to \$104,000 with experience.

6) Fill in the blanks with the verb provided, singular, plural or both if possible.

Mechatronics Careers in Homeland Security and Defense:

The Department of Defense ______ (predict) that 40% of military ground troops will be robotic in the near future; in turn, this will increase the need for robotic technicians with strong mechatronics engineering technology degrees. The PennWest California's mechatronics degree program ______ (prepare) graduates to work for the U.S. government supporting the design, construction, alteration, testing and maintenance of new robotic and drone technologies. The United Nations ______ (see) the future of mechatronic engineers in the creation of smart technologies used in surveillance, ground operations, border control, deployment logistics and more.

The committee at glassdoor.com _____ (find) mechatronics engineering technician salaries at the U.S. Department of Defense to range from \$85,040 to \$91,042, whereas the BBC ______ (state) the average salary for a U.S. Army Corps engineering technician to be at \$53,329.

7) Fill in the following text with a noun provided below. Form their respective plural form, where necessary.

foundation; opportunity; field; reason; salary; position; equipment

Mechatronics Careers in Advanced Manufacturing and Robotics:

One of the top ______ to get a mechatronics degree is the strong technical ______ you'll gain in robotics. At PennWest California, you'll have ample ______ to gain hands-on experience that will prepare you for an exciting career working with robotics in the medical and healthcare ______, for the military, or in advanced manufacturing. In these ______ you'll build robotic solutions that improve manufacturing quality, quantity and productivity; you'll manage, execute and troubleshoot electrical, robotic and automation ______; and you'll ensure that all robotic appliances are compliant with industry standards.

The average _____ for a robotics technician, according to recruiter.com, is \$51,600 per year.

8) Fill in the gaps with a suitable verb provided beneath. Sometimes more than one word may be necessary in a blank. Use its singular or plural form.

are, can, enter, mimic, prepare

Mechatronics Careers in Biotechnology, Life Science and Medical Equipment Design

Among the most exciting fields that PennWest California mechatronics engineering technology graduates ______ are biotechnology, life science and medical equipment design. A mechatronics engineering degree ______ you for careers designing and building bio-inspired machines and medical devices that ______ the behaviours of humans, animals and plants (this is called biomimetics). What you also may use knowledge of mechatronics engineering technology for ______ to improve clinical equipment, surgical procedures, rehabilitation strategies, micro-implants, prostheses and more.

According to salary.com, biomedical engineering technicians ______ an average of \$62,282 per year.

9) Look at the text below. There are seven nouns with grammar mistakes. Can you find and correct them?

What's a mechatronics degree?

As you can perhaps guess from the names, mechatronics is a combination of "mechanisms" and "electronics." But a degree in mechatronics incorporates so much more. PennWest California's mechatronics engineering technology degree program gives you a broad range of knowledges and skills in:

- > Manufacturing process.
- Industrial control principles, including instruments, circuits, component and control techniques.
- > Statistics.
- > Mechatronic control systems and programmable logic controllers.
- > Practical physics, including dynamics and fluid power.
- > The physical and chemical properties of material used in industry.
- > Machine design elements and kinematics.
- > Process control in plant automation.
- > Computer-integrated manufacturing.

10)Fill in the gaps with either a verb or a noun. Make changes to the inserted word, if necessary.

Why should I earn a mechatronics degree at PennWest California?

PennWest California's mechatronics engineering technology degree program was designed around standards set by the Engineering Technology Accreditation Commission of the Accreditation Board for Engineering and Technology (ETAC of ABET). It is the only four-year bachelor's ______ of its kind in Pennsylvania. It is also the first and only mechatronics bachelor's degree program in Pennsylvania's State System of Higher Education — your most affordable choice for higher ______ in the state.

Furthermore, PennWest California's mechatronics engineering technology program is based on a rich history of providing students with relevant, hands-on activities. In fact, our on-campus labs are among the top ______students choose to pursue mechatronics at PennWest California.

PennWest California's mechatronics engineering technology degree program is advised by a ______ of industry and academic ______ and _____ key partnerships with industry leaders:

- Siemens AG, a multinational powerhouse in electronics and electrical engineering.
- > *FESTO*, a leading supplier of pneumatic and electrical automation technology.
- Rockwell Automation, a national provider of industrial automation and information products.
- > ANSYS, a Pennsylvania-based developer of engineering simulation software.

11)Combine the sentence parts to form a coherent text.

What kind of careers can I pursue with a mechatronics degree?

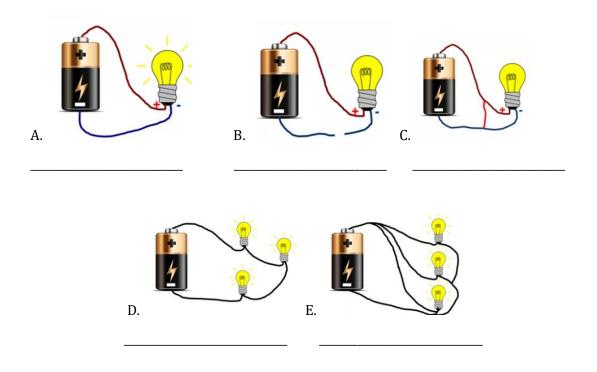
1) The U.S. Department of Labor	a) may include: Automotive technician, Telecommunications technician, Robotics technician, Biomedical engineering technician, Wind-turbine installer.
2) The U.S. Department of Defense also	 b) has deemed mechatronics an emerging growth area for new jobs, hoping the unemployment numbers will fall nationwide.
 3) From advanced manufacturing and robotics to green energy and telecommunications, you'll 4) Job titles 	 c) find mechatronics degree graduates working with smart technologies and complex machines in a variety of industries. d) has identified mechatronics as a "high-priority" occupation and has a variety of student loan benefits established.

12)In pairs, have a look at the texts on mechatronics in this unit. Answer the following questions using the texts and the internet, where necessary.

- Name at least 3 things mechatronics engineering technology includes. Explain them in your own words.
- Who are the 4 key partners for the degree program at PennWest? Can you guess what their field of work is? Have a look at their website, if necessary.
- Name two job titles for a graduate of this program. Describe the job. Use the internet, if necessary.

13)In pairs, write a summary on what careers a mechatronics degree enables you to pursue and in which field. Use the following four words (change them, if necessary) and write no more than 5 sentences.

technology; industry; activity; property


2 Electronics

What are the following words referring to?

series open short

parallelclose

Match the words from above with the drawings below. Can you name their parts and describe how they work? Have a look at the description of a *Parallel Circuit* below for reference.

When two or more loads (Bulb, CFL, LED, Fan etc) are connected to each other in parallel, then it is called Parallel Circuit. In this type of circuit, the voltage capacity of all loads must be equal to input supply. The power of the "load" can be different. In a parallel circuit, if one load or bulb gets fused, then the rest of the bulbs will still get power supply and will glow.

2.1 Types of EV batteries

1) Have a look at the text below and decide which paragraph describes one of the following batteries:

Nickel metal hydride batteries; Lead-acid batteries; Lithium-ion batteries

______ are used in all gasoline-powered vehicles to provide electricity in order to crank over the engine and get the car started. Invented in 1859, those batteries are the oldest form of rechargeable battery that is still on the market and are also called *wet cell batteries* because they use a mild solution of sulfuric acid. The name comes from the combination of lead electrodes and acid that is used to generate electricity. You'll find them used in EVs to power secondary features such as the infotainment system or driver-assist tech.

______ began to be used in the 1980s and are known for their high energy density. In other words, they pack a lot of power in a small package. Because they don't contain any toxic metals, they are easy to recycle. Here the positive electrode contains nickel oxide-hydroxide as an active material and the negative electrode is made of a hydrogenabsorbing alloy. They have a much longer life than lead-acid batteries and are widely used in hybrid and plug-in hybrid vehicles.

2) Name at least one advantage for each battery. Can you think of any disadvantages?

Nickel-metal hydride batteries: _______ Lead-acid batteries: _______ Lithium-ion batteries:

3) What does a lithium-ion (Li-ion) battery consist of?

4) Have a look at the picture. Can you describe the parts of a Li-ion battery using the terms below? Work in pairs. Use the words in italics.

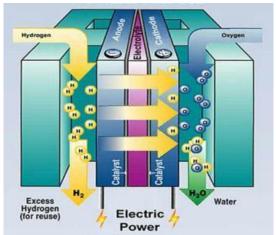
Lithium-ion Cell

carbon, metal oxide, lithium salt, separator

5) How does a lithium-ion cell work?

Have a look at the text and come up with the missing words. Then listen to the recording and check your answers.

A lithium-ion battery consists of one or more lithium ion cells along with the protective circ	:uit
board.	


In a lithium-ion cell, lithium ions (Li+) move between the electrodes of the cell internally, through a conductive electrolyte. Meanwhile, electrons move between electrodes in the ______ direction through the external circuit. The movement of the lithium ions and the electrons provides a current that charges the device.

When the battery ______ energy to a device, lithium ions are released by the ______ and ______ by the cathode.

When the battery charges, the opposite occurs: the cathode releases lithium ions and the anode _____ them. This is how a lithium-ion battery works.

6) Have a look at the following picture. What kind of battery is it? Discuss in pairs.

What do you know about it? What does it consist of? How does it work? What are its advantages and disadvantages?

7) Listen to the extract of a seminar. Are these sentences true (T) or false (F)?

a)	Fuel cells function using a chemical reaction.	
b)	Internal combustion engines have unlimited efficiency.	
c)	Even if a fuel cell is used, the car will need an electric motor to operate.	
d)	Electric motors are very flexible.	
e)	Making a small fuel cell has now become fairly simple.	

8) If you were to engineer a car, what kind of battery would you choose and why? Use the handout for guidance.

2.2 Production Management

Read through the e-mail describing a technical problem. Underline the verbs.

Following our phone conversation this morning, I confirm that a forklift truck has hit our IPS15 unit. The impact has made a large hole in the main panel on the side of the machine. Liquid lubricant is leaking out from under the machine and the unit is crackling when you switch it on – presumably due to earthing/short-circuiting resulting from electrical damage.

I confirm my request for intervention by your service team.

Find at least one example for each of the following tenses in the text above:

Present simple:

Present continuous: _____

Present perfect:

VERB FORM			
PRES. SIMPLE	PRES. CONTINUOUS		
I/you/we/they work He/she/it work s	I am working you/we/they are working he/she it/ is working		
I/you/we/they do not work (don't) He/she/it does not work (doesn't)	I am not ('m not) working You/we/they are not (aren't) working He/she/it is not (isn't) working Am I working?		
Do I/you/we/they work? Does he/she/it work?	Are you/we/they working? Is he/she/it working?		
TYPICAL TI	ME EXPRESSIONS		
always, often, usually, sometimes, (n)ever, every day/week, on Friday, in the morning(s)/evening(s)	now, at the moment, at present, just, already, still		

1) Fill in the blanks with the correct present tense.

Production management is concerned with planning and controlling industrial processes which ______ (produce) and ______ (distribute) products or services. Techniques of production management are also used in service industries, where they

are called operations management. During production processes, inputs are converted into outputs. These processes _____ (take) many forms: from agriculture basic to large-scale Much manufacturing. manufacturing _____ (take place) in factories, where assembly lines _____ (allow) a steady flow of raw materials (inputs) and finished products (outputs).

People in production ______ (focus) on efficiency and effectiveness of processes in order to maximise productivity. To achieve overall success, it ______ (be) important to measure, analyse and evaluate these processes. However, other activities also ______ (contribute) to success: purchasing, inventory control, quality control, storage, logistics.

2) Fill in the gaps with a suitable verb in the present tense.

We _____ (make) good progress with the new factory development. A new site close to the river has been acquired. Designers ______ (work/currently) on the layout of the area and exact location of the factory building. Alan Shores Ltd. ______ (carry out) all fixtures and fittings.

The present machinery ______ (be) old and several breakdowns recently have caused production backlogs. We will continue to ______

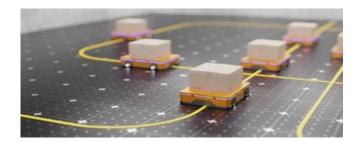
(maintain) and ______ (repair) these machines until the new ones _____

(arrive). I would ask you to ______ (carry out) a full stock inventory as soon as possible. Any faulty goods should be removed from store and disposed of.

3 What are automated guided vehicles?

Read the text and fill in the gaps with a suitable verb in the present tense.

Sometimes called self-guided vehicles or autonomous guided vehicles. automated guided vehicles (AGVs) _____ material handling systems or load carriers that autonomously throughout а warehouse, distribution center, or manufacturing facility, without an onboard operator or driver.


Applications for AGVs

Automated guided vehicle systems ______ tasks that would typically be handled by forklifts, conveyor systems or manual carts, moving large volumes of material in a repetitive manner.

AGVs are used in a variety of applications. They often ______ raw materials such as metal, plastic, rubber or paper. For example, AGVs can carry raw materials from receiving to the warehouse or ______ materials directly to production lines. AGVs consistently and reliably ______ raw materials needed without human intervention, ______ that production lines always have the materials they need without interruption.

In addition to transporting raw materials, AGVs are used in work-in-process applications and with finished goods to support production or manufacturing lines. According to Investopedia, the term work-in-process describes "partially completed goods, which are typically turned from raw material to finished product in a short period of time," such as manufactured goods. In work-in-process applications, AGVs move materials or parts from the warehouse to production lines or from one workstation to another, providing repetitive and efficient movement of materials throughout the manufacturing process. Without AGVs, manufacturing processes may come to a halt when processing lines ______ of materials. Manufacturing is then delayed while a human worker retrieves the necessary materials from storage and transports them to the production line.

AGVs are also used in inbound and outbound handling for replenishment and for picking. For example, AGVs may be used to _______ inventory from receiving to storage locations or from long-term storage locations to forward picking locations to replenish stock. _______ inventory from long-term storage to forward picking locations ensures that adequate inventory is accessible to pickers, _______ the order picking process more efficient. AGVs such as collaborative mobile robots assist in the picking process by ______ warehouse associates through tasks and transporting picked orders to packaging and shipping workstations.

1) Have a look at the text below and match the AGV navigation mechanism with its description.

HOW AGVs WORK

AGVs are self-propelled vehicles with movement guided by software and sensors. Most AGVs move along defined pathways, but as mentioned, AMRs typically have more advanced technology with dynamic navigation capabilities. Here are some examples.

AGV NAVIGATION

AGV navigation may be guided using one or more of the following mechanisms:

1)	Magnetic guide tape	A) With this method, reflective tape is mounted on objects such as walls, fixed machines and poles. AGVs are equipped with a laser transmitter and receiver. The lasers reflect off of the tape within the line of sight and are used to calculate the object's angle and distance from the AGV.
2)	Wired navigation	B) Some AGVs follow wire paths embedded into the facility floor. The wire transmits a signal that AGVs detect via an antenna or sensor.
3)	Laser target navigation	C) Like vision-guided AGVs, no infrastructure modifications are required for AGVs that use geoguidance. Geoguided AGVs recognize objects in their environment to establish their location in real-time to navigate throughout the facility.
4)	Inertial navigation	D) No modification is required to the infrastructure for vision-guided AGVs. Cameras record the features along the route, and AGVs rely on these recorded features to navigate.
5)	Vision guidance	E) This is a sophisticated navigation technology utilizing sensors that transmit laser pulses to measure the distance between the robot and objects in its environment. This data is compiled to create a 360-degree map of the environment, allowing robots to navigate the facility and avoid obstacles without the need for any additional infrastructure. 6 River Systems uses LiDAR navigation technology to enable their AGVs to navigate a warehouse without requiring changes to infrastructure as well as to adapt to new environments should the layout of a warehouse floor change.
6)	Geoguidance	F) Some AGVs have magnetic sensors and follow a track using magnetic tape.
7)	LiDAR	G) Some AGVs are controlled by a computer system with the aid of transponders embedded into the facility floor to verify that the AGV is on the proper course.

2) Discussion

- a) What are some other parts of an AGV that can be controlled by automated mechanisms?
- b) Can you think of any types of AGVs?
- c) Why choose AGVs instead of conventional vehicles?

3.1 AGVs, AMRs and other types of automated vehicles

- 1) Skim through the following text. Highlight the topic sentences.
- 2) Write down a suitable heading for the text.
- 3) Using your topic sentences, tell the class what this text is about.

Automated Guided Vehicle (AGV) is the most common name for various types of automatic trolleys used for internal transport. It is often used alongside or even interchangeably with the name Automated Mobile Robot (AMR). There are also terms like Autonomous Intelligent Vehicle (AIV), Self-Guided Vehicle (SGV), and even Laser-Guided Vehicle (LGV). How to tell these machines apart? What design and functional differences are hidden in these terms and abbreviations?

An overabundance of names is often a result of a strong desire among manufacturers to distinguish their robots from the competition. However, regardless of the terms used, a rudimentary distinction can be made based on the level of autonomy of the machine.

Automated vs autonomous

The automation of internal transport is currently associated primarily with the concept of Industry 4.0, i.e. the Fourth Industrial Revolution. However, it is worth remembering that the first AGV trolley was introduced as early as the mid-twentieth century. The machine was deployed at the U.S. Barrett Electronics facility in Northbrook, Illinois. This historic robot was a kind of tug, adapted to pull trolleys and trucks without their own engines. It had very limited autonomy – it moved thanks to inductive guidance, that is, along a live wire embedded into the plant floor.

The key to the development of AGV robots was a navigation system capable of working inside warehouses and production facilities. The replacement of live wires embedded in the floor with adhesive tapes stuck to the surface of it was another milestone. Guides like these, made from ferromagnetic or light reflective material, did not require as much interference into the architecture of the work environment as inductive guidance, which greatly contributed to the popularisation of AGV robots. Machine vision and laser-based navigation were the next big breakthroughs. This is where the name Laser-Guided Vehicle (LGV) comes from. Using this technology, the robot scans the surroundings and possible routes during its first journey and creates a digital map of the area. Once implemented, the map is a reference guide for the robot. It compares the current state of the environment with the digital counterpart, which enables it to distinguish between permanent obstacles (storage shelves, pillars, walls, etc.) and temporary obstructions (e.g. an abandoned loaded pallet, etc.). Thanks to the use of laser scanners, AGV robots could be 'unleashed' – physical guidance systems became superfluous.

AGV robots, if equipped with the appropriate software, can independently make decisions about the best route to take, but also assess whether a given obstacle is temporary (e.g. a forklift operated by a person) and passage will be possible shortly, or whether it is better to choose a new route to the collection and delivery point. If the AGV truly possesses such capabilities, then it fully deserves to be called an AMR. An example of Autonomous Mobile Robots, transport trolleys with actual autonomy, are the VERSABOT 500 and VERSABOT 1000.

Unit load vehicles, tugs and forklifts

Apart from a division based on intelligence and autonomy, AMRs also represent several different functional classes. As mentioned above, the first AGV trolley was a tug, representing the category of towing vehicles. These types of trolleys or trucks are designed to move loads on mobile platforms. An interesting class of AGV robots are the so-called fork vehicles, i.e. autonomous forklifts, that enable horizontal transport, but also collection and delivery of loads to the higher shelves of storage racks.

The aforementioned VERSABOT 500 and VERSABOT 1000 belong to the currently most popular class of AGVs in the industry – unit load vehicles. They are very easy to spot – low platforms equipped with a load collection mechanism. The items to be transported are either on a pallet or a specially adapted cart on wheels – the robot moves under the cart, attaches to it from below, and begins the delivery.

AMRs are the future

To sum up this analysis, it can be assumed that Automated Guided Vehicle (AGV) is the broadest category that encompasses all automated trolleys (mobile robots) used for internal transport in warehouses and production facilities. Autonomous Mobile Robots (AMRs), also called Autonomous Intelligent Vehicles (AIVs) or Self-Guided Vehicles (SGVs), are the most important subcategory of AGVs. Mobile robots that use inductive or reflective guidance systems are still present in warehouses and factories. However, at present, the market is dominated by robots that navigate using digital maps of the premises.

The choice of a specific AMR model should be based on an analysis of implementation possibilities in a given work environment. When it comes to the design of the machines themselves, their navigation systems or lift capacity, there are very few differences between what the AMR manufacturers have to offer. The key issue is the efficient management of the robot fleet. The actual advantages of using AMRs depend on the system's capabilities, including its optimisation potential.

20

3) Fill in the blanks with the appropriate words from the text:

- 1) The ______ of AGV robots was a navigation system capable of working inside warehouses and production facilities.
- 2) The AGV trolley at the U.S. Barrett Electronics facility had ______ autonomy as it moved along a live wire.
- 3) The ______ of AGV robots led to the popularization of adhesive tapes as guides.
- 4) Laser scanners enabled AGV robots to navigate without the need for ______ guidance systems.
- 5) AGV robots can make decisions about the best route to take and assess whether an obstacle is ______ or permanent.

4) Choose the correct synonym or antonym for some of the words from the text above:

Overabundance

Autonomy

b) Liberty

a) Dependence

c) Sovereignty

- a) Excessb) Scarcity
- DJ Scarcity
- c) Shortage
- d) Deficiency

Implementation

- a) Execution
- b) Abandonment
- c) Termination
- d) Withdrawal

Distinguish

d) Reliance

- a) Differentiate
- b) Associate
- c) Identify
- d) Merge

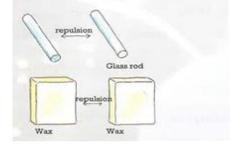
Optimisation

- a) Enhancement
- b) Deterioration
- c) Decline
- d) Disruption

4 Static electricity

How do identical materials behave after having been rubbed? What is static electricity?

Which forces are produced during the process of rubbing?


1) Read the text and put it in the right order. Then check your answers from the questions above.

Some experimenters speculated that invisible "fluids" were being transferred from one object to another during the process of rubbing, and that these "fluids" were able to create and influence a physical force over a distance. Charles Dufay was one of these early experimenters who demonstrated that there were definitely two different types of changes resulting from rubbing certain pairs of objects together. The fact that there was more than one type of change in these materials was evident because there were two types of forces produced: **attraction** and **repulsion**. The hypothetical fluid transfer became known as a **charge**.

The result of an imbalance of this "fluid" (electrons) between objects is called **static electricity**. It is called "static" because the displaced electrons tend to remain stationary after being moved from one material to another. Further experimentation with wax and wool led to the discovery that electrons in the wool were actually transferred to the atoms in the wax. Consequently, an object whose atoms have received a surplus of electrons is said to be **negatively** charged, while an object whose atoms are lacking electrons is said to be **positively** charged.

Glass and silk are not the only materials that are known to behave in this way. Anyone who has ever brushed up against a latex balloon only to find that it tries to stick to them has experienced this same phenomenon. Another pair of materials early experimenters recognized as possessing visible attractive forces after being rubbed together is paraffin wax and wool cloth.

This phenomenon became even more interesting when it was discovered that identical materials, after having been rubbed with their respective cloths, always repelled each other:

Centuries ago it was discovered that certain types of materials mysteriously attracted one another after being rubbed together. For example: after rubbing a piece of silk against a piece of glass, the silk and glass would tend to stick together. Not only that, but an attractive force could be seen even when the two materials were separated:

Much later, it was discovered that this "fluid" was actually composed of extremely small bits of matter called **electrons**, named in honor of the ancient Greek word for amber - another material that exhibits **charge** when rubbed with cloth. Experimentation has since revealed that all objects are made up of extremely small "building-blocks" known as **atoms**, and that these atoms are in turn composed of smaller components known as **particles**. The three fundamental particles in atoms are called **protons**, **neutrons**, and **electrons**.

Furthermore, it was found that any material manifesting properties of attraction or repulsion after being rubbed could be classed into one of two distinct categories: attracted to glass and repelled by wax, or repelled by glass and attracted to wax. It was either one or the other: there were no materials found that would be attracted to or repelled by both glass and wax, or that reacted to one without reacting to the other.

This led to more attention being directed toward the pieces of cloth used to do the rubbing. It was discovered that after rubbing two pieces of glass with two pieces of silk cloth, not only did

the glass pieces repel each other, but so did the cloths. The same phenomenon held true for pieces of wool used to rub wax.

Now, this was really strange to witness. After all, none of these objects were visibly changed by the rubbing, but they still definitely behaved differently than before they were rubbed. Whatever change took place to make these materials attract or repel one another was invisible.

4.1 Static build-up in manufacturing

Static build-up is the phenomenon wherein electric charges are exchanged between the surfaces of two objects that come into contact with each other. In this process, one object takes on a positive charge and the other a negative charge. It is because of this that static electricity builds up on the surface of objects.

2) There are three major types of static build-up. Read the texts below and decide what the term for each type of build-up is. Choose from the following:

Frictional Static Build-up; Contact Static Build-up; Detachment Static Build-up

This is the static buildup that occurs wh transferred from one object to the other		ontact with each other and electrons are
The transition of this charge is almost co Contact static buildup is the main cause	the second se	
	000000	
Objects approach	Objects touch	Objects detach
This is the static buildup created when frie The principle behind this occurrence of st static buildup. However, as the area of cor generated is greater than the amount pro	atic electricity is the same a ntact is larger, the amount o	as that for contact


Additionally, because the contact surface area increases as more force is applied, the amount of static electricity tends to increase.

When objects rub against each othér

This is the static buildup that occurs when items like adhesive tape and protective film are removed.

As with frictional static buildup, the principle behind this kind of static electricity is the same as that for contact static buildup.

The tape or film is in very close contact with the object so the effective contact surface is large. The amount of static electricity generated is overwhelmingly greater than that of contact static buildup.

When an attached material is removed

- 3) Static Electricity in Manufacturing
- What are the causes of static electricity in manufacturing?
- Try to come up with 2 different examples. Work in small groups. Here are some ideas to get you started:

Rapid heat change; Induction

5 Nanotechnology

1) Read the text and underline the verbs.

The American physicist Richard Feynman lectured, "There's Plenty of Room at the Bottom," at an American Physical Society meeting at Caltech on December 29, 1959, which is often held to have provided inspiration for the field of nanotechnology. Feynman had described a process by which the ability to manipulate individual atoms and molecules might be developed, using one set of precise tools to build and operate another proportionally smaller set, so on down to the needed scale. In the course of this, he noted, scaling issues would arise from the changing magnitude of various physical phenomena: gravity would become less important, surface tension and Van der Waals attraction would become more important.

There are **four past tense forms** in English:

Past simple	I worked
Past continuous	I was working
Past perfect	I had worked
Past perfect continuous	I had been working

VERB FORM			
PAST SIMPLE (regular v.)	PAST CONTINUOUS		
I/you/we/they <mark>worked</mark> He/she/it <mark>worked</mark>	I <mark>was</mark> working you/we/they were working he/she it/ <mark>was</mark> working		
I/you/we/they did not work (didn't) He/she/it did not work (didn't)	I <mark>was not (wasn't)</mark> working You/we/they were not (weren't) working He/she/it was not (wasn't) working		
Did I/you/we/they work? Did he/she/it work?	Was I working? Were you/we/they working? Was he/she/it working?		
TYPICAL TIME EXPRESSIONS			
yesterday, this morning/evening, last week/year, a week/month ago, that day/afternoon, the other day/week, at eleven o'clock, on Tuesday, in 2006, once, then			

next, etc.

2) Read the following text on nanotechnology and put the verb into the correct past tense form.

Nanotechnology has revolutionized various fields of science and technology. In the past, scientists ______ (conduct) extensive research to understand the potential applications of nanotechnology. They ______ (discover) that by manipulating matter at the atomic and molecular level, they could create materials and devices with unique properties.

In the early days of nanotechnology, researchers ______ (focus) on developing new methods and tools. They ______ (work) tirelessly in laboratories, conducting experiments and analyzing data. Scientists across the globe ______ (collaborate) on groundbreaking projects, sharing their findings and pushing the boundaries of knowledge.

During that time, nanomaterials _______ (begin) to gain recognition. Scientists ______ (synthesize) nanoparticles and nanocomposites with remarkable properties. These materials _______ (show) great promise in areas such as electronics, medicine, and energy storage. Researchers ______ (work) meticulously, studying the behaviour of these materials under different conditions.

While scientists ______ (explore) the potential of nanotechnology, industries ______ (start) to show interest. Companies ______ (invest) heavily in research and development to harness the benefits of nanomaterials. They ______ (employ) skilled engineers and scientists to further advance nanotechnology applications.

3) Now continue with the second half of the text. Use the past continuous tense.

In 2010, researchers ______ (investigate) the potential use of nanomaterials in solar cells. They ______ (explore) ways to enhance the efficiency of solar energy conversion. Scientists ______ (experiment) with different nanoscale materials, testing their conductivity and absorption properties.

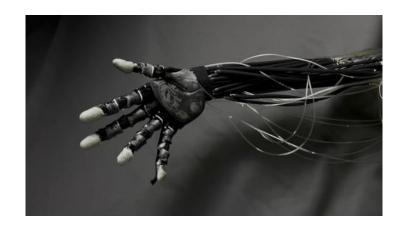
Meanwhile, in the field of medicine, scientists ______ (develop) drug delivery systems using nanoparticles. They ______ (conduct) trials to understand how these nanoparticles interacted with the human body. Researchers ______ (carefully monitor) the release of drugs from the nanoparticles and studying their effectiveness in treating various diseases.

In conclusion, nanotechnology has come a long way since its inception. Scientists and industries have made significant strides in utilizing nanomaterials for various applications.

4) Underline the correct alternative.

Nanotechnology has had a significant impact on the field of medicine. Researchers (1) were **developing/were developed** innovative techniques to improve patient care. One area of focus (2) **was/was being** the development of nanoscale drug delivery systems.

In the past, scientists (3) **conducted/were conducting** extensive research to understand the potential applications of nanotechnology. They (4) **synthesized/were synthesizing** nanoparticles with unique properties. Meanwhile, doctors (5) **tested/were testing** these nanoparticles for targeted drug delivery.


During the testing phase, the researchers (6) **analyzed/were analyzing** the effectiveness of the drug delivery system. They (7) **measured/were measuring** the release of drugs from the nanoparticles and (8) **monitored/were monitoring** their behavior in the body. At the same time, patients (9) **received/were receiving** treatment with these nanoscale drug delivery systems.

In recent years, advancements in nanotechnology (10) **led/were leading** to improved treatments. Scientists (11) **developed/were developing** new nanosensors for disease detection. These nanosensors (12) **detected/were detecting** early signs of diseases, enabling prompt intervention.

In conclusion, nanotechnology (13) **revolutionized/was revolutionizing** the field of medicine. Researchers (14) **made/were making** significant progress in developing nanoscale drug delivery systems and nanosensors. The use of nanotechnology in medicine (15) **improved/was improving** patient outcomes and (16) **opened/was opening** new possibilities for disease detection and treatment.

5) Now look back at this unit and try to answer the following questions.

- A. What initial focus did researchers have in the early days of nanotechnology?
- B. How did industries react to the advancements in nanotechnology?
- C. What were researchers investigating in 2010 regarding solar cells?

6 Artificial muscles

Artificial muscle systems represent a crucial area of innovation in mechatronics, offering biomimetic solutions for motion and force generation. As research progresses and technology advances, these systems hold the promise of revolutionizing robotics and prosthetics, paving the way for a future where machines more closely resemble their biological counterparts.

1) Think about the following questions regarding artificial muscles.

- As artificial muscle muscles become more advanced, what ethical considerations arise in terms of their use in enhancing human capabilities or replacing human labor?
- Can you think of any environmental impacts of developing and using artificial muscle systems? How can engineers design these systems to be more sustainable?
- What are some advancements artificial muscles might bring along? Compare a world with and without artificial muscle systems.

PAST PERFECT	FUTURE PERFECT
I had worked you/we/they had worked he/she it/ had worked	I will ² have worked you/we/they will have worked he/she it/ will have worked
I had not (hadn't) worked You/we/they had not (hadn't) worked He/she/it had not (hadn't) worked	I will not have (won't) worked You/we/they will not have (won't) worked He/she/it will not have (won't) worked
Had I/ you/we/they worked? Had he/she/it worked?	Will I/ you/we/they have worked? Will he/she/it have worked?
	I had worked you/we/they had worked he/she it/ had worked I had not (hadn't) worked You/we/they had not (hadn't) worked He/she/it had not (hadn't) worked Had I/ you/we/they worked?

since, yet, never, always, so far, many times, lately, recently, already, by (the time), before, etc.

² 'will' and 'going to' can be used interchangeably with only a minor difference in meaning.

2) Read the text on artificial muscles and fill in the blanks using the Present Perfect tense.

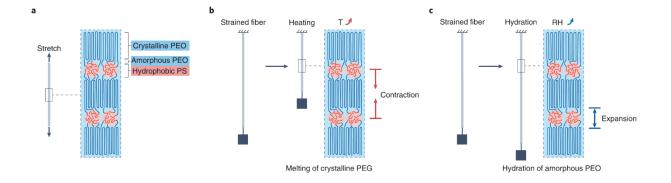
Artificial muscles developed through nanotechnology _______ (revolutionise) the field of robotics and prosthetics. Scientists ______ (make) significant progress in creating highly functional and flexible materials. They ______ (work) tirelessly to harness the potential of nanomaterials for constructing artificial muscles.

Researchers ______ (utilise) nanofibers and nanocomposites to fabricate artificial muscles with exceptional strength and resilience. These materials ______ (demonstrate) the ability to contract and expand in response to electrical stimulation, mimicking natural muscle movements.

The development of artificial muscles _______ (be) an ongoing process. Scientists ______ (conduct) numerous experiments to optimize the performance of these materials. They ______ (explore) different combinations of nanomaterials and studied their mechanical properties.

In recent years, researchers ______ (achieve) breakthroughs in enhancing the controllability and response time of artificial muscles. They ______ (employ) advanced manufacturing techniques and incorporated nanoscale sensors to provide real-time feedback for precise control.

The advancements in artificial muscle technology ______ (pave) the way for innovative applications. Prosthetic limbs equipped with nanotechnology-based artificial muscles offer improved mobility and functionality for individuals with limb loss. Additionally, robotic systems integrated with these artificial muscles ______ (become) more agile and capable of performing intricate tasks.


3) Fill in the blanks with the appropriate form of the Past Perfect tense of the verbs given in brackets.

- 1) The researchers _____ (conduct) extensive experiments before they published their findings.
- By the time the team arrived at the conference, other scientists _____ (already/ present) their research.
- Before the breakthrough, the engineers _____ (work) on artificial muscle prototypes for several months.

- 4) The scientists ______ (discover) that nanomaterials had been used in previous studies on artificial muscles.
- 5) By the end of the year, the researchers _____ (achieve) remarkable progress in enhancing the performance of artificial muscles.

4) Rewrite the sentences using the Past Perfect tense.

- a) The scientists published their findings after they conducted extensive experiments.
- b) The team arrived at the conference. Other scientists had already presented their research.
- c) The engineers had worked on artificial muscle prototypes for several months before the breakthrough.
- d) The researchers found that nanomaterials had been used in previous studies on artificial muscles.
- e) The researchers achieved remarkable progress in enhancing the performance of artificial muscles by the end of the year.

7 Codes and Standards in Engineering

1) Read the text on standards and fill in the blanks with the right tense.

What (1) ______ (be) the first concern of any engineer? At one time, perhaps, the answer to this question (2) ______ (be): to solve a problem or to improve an existing machine, or even to make more money. Nowadays, however, the answer (3) ______ (be) simple. The first concern (4) ______ (be) safety. This concern (5) ______ (lead) to the introduction of worldwide codes and standards for the manufacture and maintenance of machines.

Machinery of all kinds (6) ______ (certainly/ make) the world a more dangerous place. Hundreds of people are at risk from the crash of a jumbo jet, or the explosion of a power station. At one time, of course, engineers (7) ______ (not/ know) how to make a chine safe. But a they (8) ______ (begin) to understand the science behind the behaviour of metals and other materials, engineers (9) ______ (start) to construct codes of manufacturing and standards to which machines (10) ______ (must) be built.

The steam engine (11) ______ (be) one of the first machines which (12) ______ (arise) interest in safety standards. The danger of steam under pressure was recognized very early in the history of the machine. Denis Papin, a French mathematician, (13) ______ (design) the first safety valve for boilers in 1679. But safety valves sometimes (14) ______ (fail) and explosions (15) ______ (be) quite common.

The steam engine (16) ______ (work) on a very simple scientific principle. When you (17) ______ (heat) water in a vessel, the molecules (18) ______ (expand), until, at a certain temperature, the liquid (19) ______ (turn) into a gas. This gas (20) ______ (need) a greater space than the same volume of liquid. If the Bessel is sealed, the gas (21) ______ (not/ can) occupy a greater volume, so the pressure (22) ______ (increase).

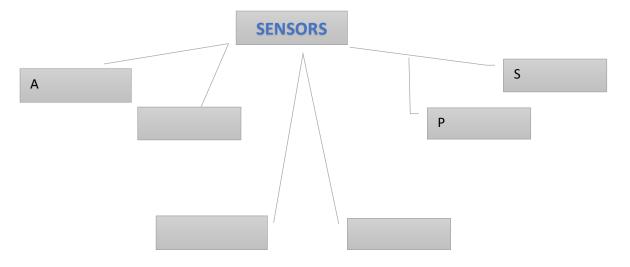
At first, engineers (23) ______ (try) to avoid the problem by only working with lowpressure steam. The first practical low-pressure engine was built in 1712 by Thomas Newcomen, an English inventor. It was used to pump water out of a coal mine. The invention (24) ______ (help) to spark the Industrial Revolution, the time of fast progress in mechanization of agriculture and the textile industry.

James Watt (25) ______ (improve) the efficiency of the engine. His first patent, in 1769, (26) ______ (include) oil lubrication, and insulation of the cylinder to maintain the high temperature needed for efficient operation. Further improvements were made in the 1830s by a man called Jacob Perkins. His boiler (27) ______ (can) produce 1,400 pounds per square inch (psi). The normal pressure of the air around us, atmospheric pressure, is 14,7 psi.

However, as the boilers (28) ______ (use) higher temperatures and developed higher pressures, the dangers (29) ______ (rise). In 1854, an explosion in England (30) ______ (kill) ten people. ON 30th July, 1870, the boiler of the Staten Island ferry in New York City (31) ______ (explode), killing 62 people. It (32) ______ (be) time for mechanical engineers to act.

In 1882, a new law on boiler safety was passed in the UK. As a result, the number of deaths from boiler accidents (33) ______ (fall) from 35 in 1883 to 14 in 1905. However, there (34) ______ (be) no similar legislation in the United States and 383 people (35) ______ (die) in the same period. Finally, in 1914, the American Society of Mechanical Engineers (ASME) (36) ______ (produce) the Boiler Safety Code.

The boiler code (37) ______ (be) only the start. Over the next 80 years, the ASME (38) ______ (produce) codes in all areas of mechanical engineering, including safety standards for cranes, industrial ladders, elevators, machinery shafts, liquid fuels and incinerators for hazardous medical waste.


Codes and standards in engineering (39) _____ (be) often unknown to the general public. However, they (40) _____ (be) fundamental to the safety of manufactured products and they (41) _____ (lead) to a safer world.

2) Read the text again and try to answer the following questions.

- 1. What do you understand by the term *codes and standards*?
- 2. Think of good research questions before you re-read the text. Have those questions been answered in the text?
- 3. Highlight the topic sentences for each paragraph. What will you find in the rest of the paragraph?
- 3) Write a short summary (<u>150 words</u>) of the text on Codes and Standards. Pay attention to the verb tense. Work in pairs, if necessary.

8 Sensors in Mechatronics

1) How do you classify sensors in Mechatronics? Can you think of the different types? The first letter to some of those is already given.

- 2) Check your diagram with another student. Then, listen to the short extract of a lecture on sensors. (Note, the lecturer is a foreign speaker)
- 3) Now listen again and try to answer the following questions:
- a. According to the video, what is the significance of UC activation?
- b. What is mentioned about the location of job placement?
- c. What does the video suggest about the role of producers and directors?

4) Complete the following sentences using the present continuous tense to talk about future plans and arrangements. Do not repeat verbs.

conduct; explore; have; showcase; organize

- a) The engineering team ______ a workshop on sensor calibration next week.
- b) Our company ______ a new sensor prototype at the upcoming tech exhibition.
- c) Currently, the technicians ______ the latest advancements in sensor technology.
- d) I ______ a conference call with sensor suppliers tomorrow morning.
- e) The research and development department ______ a series of experiments with different sensors this month.

5) Use the present simple tense to fill in the blanks with scheduled events. Do not repeat verbs.

arrive; complete; happen; occur; take place

- a) The seminar on "Introduction to Sensors" ______ on August 15th.
- b) The factory tour ______ every Friday at 3 PM.
- c) The guest speaker from XYZ Sensors Inc. _____ next week.
- d) Our team ______ the final sensor testing phase on September 10th.
- e) The annual conference on mechatronics ______ in October.

6) Fill in the gaps with the verbs in brackets. Use the correct present tense.

Advancing Encoders in Mechatronics: A Glimpse into the Future

In the world of mechatronics, encoders play a crucial role in converting mechanical motion into electrical signals. As technology continues to advance rapidly, the future of encoders ______ (become) even more promising, with significant developments and applications on the horizon.

Currently, engineers and researchers ______ (explore) innovative ways to enhance encoder technology. They ______ (develop) encoders with higher precision and accuracy to meet the ever-increasing demands of industries like robotics, automation, and manufacturing. As we ______ (speak), several companies ______ (invest) in research and development projects focused on improving encoder resolution and reducing signal noise.

Moreover, the ongoing collaboration between mechatronics experts and software developers ______ (lead) to the creation of smart encoders. These encoders will be equipped with built-in processors and advanced algorithms, allowing them to process data in real-time. This development ______ (open up) new possibilities for real-time motion control and

predictive maintenance in mechatronic systems. In the near future, we will see smart encoders being integrated into various applications, from precision manufacturing machines to autonomous vehicles.

Additionally, the application of encoders ______ (expand) beyond traditional industries. With the rise of wearable devices and the Internet of Things (IoT), encoders are being utilized in novel ways. Researchers ______ (work/currently) on miniature encoders that can provide accurate motion tracking for wearable health devices and virtual reality applications.

Looking ahead, the demand for encoders will continue to soar, driven by the increasing automation and digitalization of industries. Companies _______ (schedule) workshops and conferences to discuss and explore the latest advancements in encoder technology and its potential applications. Engineers ______ (participate/ actively) in these events to stay up-to-date with the latest trends and to develop innovative solutions for future challenges.

8.1 **BionicANTs**

7) Fill in the gaps with the words in brackets to express future using will.

- a) The research team ______ (integrate) artificial intelligence into BionicANTs to enhance their autonomous capabilities.
- b) In the coming months, scientists ______ (study) swarm behaviour in BionicANTs to optimize their collective decision-making processes.
- c) To increase their versatility, BionicANTs ______ (feature) modular components that can be easily replaced and upgraded.
- d) The company _____ (invest) in extensive field-testing to validate the reliability of BionicANTs in real-world scenarios.
- e) By the end of the decade, BionicANTs _____ (play) a crucial role in tasks such as search and rescue operations.
- f) Engineers _____ (work) on miniaturizing components to reduce the overall weight and size of BionicANTs.
- g) The team ______ (focus) on improving the communication protocols among BionicANTs for better coordination.
- h) Researchers ______ (explore) biomimicry further to enhance BionicANTs' adaptability to different terrains.

8) Now fill in the gaps again, but this time to express future using *be going to*.

- a) The research team has identified key areas for improvement, and they ______ (implement) changes in BionicANTs' design.
- b) By 2025, engineers ______ (conduct) field tests in challenging conditions to evaluate the performance of BionicANTs.
- c) The company ______ (collaborate) with industry partners to accelerate the adoption of BionicANTs in practical applications.
- d) In the near future, BionicANTs ______ (revolutionize) the monitoring of industrial facilities for maintenance and safety purposes.
- e) Scientists ______ (study) the behaviour of real ants in depth to further enhance the swarm intelligence of BionicANTs.
- f) By the end of the project, BionicANTs _____ (be capable) of seamlessly interacting with other robotic systems in complex operations.
- g) Next year, BionicANTs ______ (be commercially available) for various industries, ranging from construction to environmental monitoring.
- h) The company ______ (actively promote) the educational aspects of BionicANTs to inspire future generations of engineers and researchers.

9) Fill in the gaps in the following text. Each paragraph has a specific future tense. Decide which verb and tense to use.

verbs: integrate, enable, play

Researchers believe that BionicANTs _______ a pivotal role in multiple domains. By 2030, engineers _______ artificial intelligence, allowing BionicANTs to make autonomous decisions and adapt to dynamic environments efficiently. The swarm intelligence algorithms ______ them to communicate seamlessly, enhancing their collaborative efforts in tasks like environmental monitoring and search and rescue operations.

verbs: collaborate, harness, focus

In the near future, scientists _______ on optimizing the energy efficiency of BionicANTs. By 2025, they _______ solar energy to power the robots, reducing their reliance on traditional batteries and extending their operational duration significantly. Moreover, the research team ______ with various industries, intending to deploy BionicANTs in logistics and precision agriculture applications.

verbs: refine/continuously, develop, conduct/also

The company's commitment to innovation is evident in its ongoing efforts. In the coming months, engineers ______ more compact and lightweight components for BionicANTs. They ______ extensive field tests to evaluate the robots' performance in extreme weather conditions and challenging terrains. Throughout this process, the team ______ the robots' capabilities.

verbs: undergo, perfect, integrate, achieve, study

By 2035, BionicANTs ______ remarkable transformations. Researchers ______ real ants' behaviors and ______ these insights into the swarm intelligence algorithms, making BionicANTs more adaptable and responsive. Engineers ______ their construction materials and ______ a high level of durability and resilience, ensuring their efficiency in demanding operations.

9 Grammar reference

9.1 Nouns

The English language has countable and uncountable nouns. Compare:

Countable (<i>things we can count</i>)	Uncountable (<i>things we cannot count</i>)
I eat a banana every day.	I eat rice every day.
I like bananas .	I like rice .
We don't have enough cups .	We don't have enough water .
<i>How many</i> bananas do you have?	<i>How much</i> rice is there?

9.1.1 Countable nouns

Countable nouns refer to things, concepts or living creatures we can count. Thus, those nouns may have a singular or a plural form. In order to form a **plural** noun, you will have to follow these rules:

- 1) with regular nouns just add -s to the end
 - a. member -> members; room -> rooms; street -> streets
- should the singular noun end in -s, -ss, -sh, -ch, -x, or -z, add <u>-es</u> to the end
 a. bus -> buses; lunch -> lunches; tax -> taxes
- some nouns ending in -s or -z may require doubling that consonant before adding -es.
 a. quiz -> quizzes; gas -> gasses
- 4) nouns ending with -f or -fe change these letters to -ve before adding the -s.
 - a. wife -> wives; wolf -> wolves
 - b. EXCEPTIONS: roofs, beliefs, chefs, chiefs
- 5) with singular nouns that end in consonant + *y*, the -*y* changes to -*ie* before adding the -*s a. battery* -> *batteries*
- 6) if the noun ends in a vowel + *y*, simply add the -*s*
 - *a.* boy -> boys
- 7) if the noun ends in *-o*, add *-es* to form plural nouns
 - a. potato -> potatoes
 - b. EXCEPTION: photos, pianos, halos,
- 8) if the singular ends in *-us*, the plural ending is usually *-i*
 - a. focus ->foc**i**
- 9) if the noun ends in *-is*, the plural ending is frequently *-es a. analysis -> analyses*
- 10) if the noun ends in *-on*, the plural ending is *-a*
 - a. criterion -> criteri**a**
- 11) some nouns do not change when they are pluralized! *a. sheep, species, deer.*
- 12) IRREGULAR NOUNS follow no specific rules.
 - a. child -> children; tooth -> teeth; mouse -> mice

Some nouns end in **-ics** but are not usually plural. For example: athletics, mathematics, mechatronics, physics, electronics, economics.

Mechatronics is a high-tech field.

News is not plural.

What time *is* the news on television?

Some words ending in **-s** can be singular or plural. Compare:

a means of transportation	many means of transport
a television series	two television series
a species of bird	200 species of bird

We think of a sum of money, a period of time, a distance etc. as one thing. Therefore, we use a singular verb:

Twenty thousand pounds (=it) <u>was</u> stolen in the robbery. **Three years** <u>is</u> a long time to be without a job. **Six miles** <u>is</u> a long way to walk every day.

9.1.2 Uncountable nouns

Uncountable nouns are usually nouns that refer to an idea, a concept or any sort of system that we cannot necessarily divide into elements without changing its meaning. Note that in some languages those nouns may be countable. For example:

news; advice; information	rice; sugar; butter; water
music; art; love; happiness;	electricity; gas; power
furniture; luggage	money; currency

Uncountable nouns can be divided into **abstract**, **concrete** or **collective** nouns. Have a look:

- ➤ abstract noun: The <u>advice</u> Greg received from his father helped him tremendously.
- **concrete noun**: The price of **<u>oil</u> continues to increase**.
- > **collective noun**: When will the **<u>food</u>** be ready?

Look at the following sentences and the nouns in bold. Which ones are abstract nouns, which ones are concrete nouns and which ones are collective nouns?

- a) Could you please fill the shaker with **salt**?
- b) The **air** felt thick after the thunderstorm.
- c) Mary listed all of the key facts of the **investigation**.
- d) Betty felt that **love** was in the air.
- e) Help yourself to the **food** in the refrigerator.
- f) Sarah enjoys eating **fruit** for breakfast.
- g) After a dry summer, there is less **water** in the pond.
- h) They all thought Alex was a true **patriot**.
- i) The **government** declared today was a national holiday.

Note that collective uncountable nouns can refer to either the group as a whole, or the individuals within the group. Thus, we use either a singular or a plural verb depending on where the focus is.

The **council** <u>has/have</u> postponed a decision on the new road.

However, there are cases where we have to use a singular or a plural form of the verb:

The committee usually raise their hands to vote 'Yes'. (raises)	The action is conducted by individuals rather than the group (committee) as a whole.
The school is to close next year (are)	The subject is the school as a building or institution, not the individuals in the school.

Many nouns can be used as both, countable and uncountable nouns, sometimes with a change in meaning.

Compare and jot down the difference in meaning.

Countable	Uncountable	
There is some juice on the table.	There are some juices on the table.	
I had a good time at the party.	I don't have time to do the work.	
The nation's fuel supplies will not last forever.	The government will boost the supply of sustainable alternatives.	
Industries exploit the technologies developed by universities .	It's very common to go to university after secondary school.	

9.1.3 Agreement between subject and verb

A singular subject is followed by a singular verb, and a plural subject is followed by a plural verb.

Mechatronics is a high-tech field. As more businesses advance their technologies, mechatronics engineering will continue to grow in demand.

If the subject is a noun phrase, the verb agrees with the main noun in the subject.

Even manufacturing <u>businesses</u> considering a technology upgrade <u>turn</u> to mechatronics engineers in order to evaluate assembly line efficiency and costs. The only <u>assistance</u> required in mechatronics <u>is</u> the design of robotic and intelligent equipment.

If the subject is a clause, we usually use a singular verb:

Having overall responsibility for the course <u>means</u> that I have a lot of meetings.

However, if we use a **what-**clause as a subject, the verb agrees with the following main noun. Compare:

What a mechatronics degree from PennWest California will prepare you for <u>is</u> *a career as a mechatronics engineering technologist in a vast array of industries.* What is needed <u>*are*</u> *additional resources.* (or more colloquially *is*)

9.2 Perfect tenses

The English Perfect tenses are all used to make connections in time for actions that are completed. Here are examples of verbs in the perfect tense.

> The Present Perfect Tense

The researchers **have made** a great discovery.

> The Past Perfect Tense

The company was sure that competing researchers **had made** a great discovery.

> The Future Perfect Tense

By the time this discovery goes public, the company will have made <i>their own breakthrough.

To form a perfect tense, we use the auxiliary verb *to have* and the past participle of the verb.

9.3 Past tenses

The past tense in English is used:

- ➢ to talk about the past
- to talk about hypotheses (when we imagine something)
- ➢ for politeness

When talking about the past, we use the past tense to talk about:

➤ something that happened once in the past:

I met my wife in 2002.

The scientists **created** a new type of solar panel.

The scientists **discovered** a novel method to extract energy from waste materials, revolutionizing the field of renewable energy.

> something that happened several times in the past:

When I **was** a boy, I walked a mile to school every day.

The production line underwent regular inspections to ensure consistent quality standards were maintained.

The software developers **conducted** multiple software updates to address known issues and enhance the system's performance.

> something that was true for some time in the past:

I **lived** abroad for ten years.

During the testing phase, the prototype **exhibited** intermittent functionality issues that were later resolved through iterative improvements.

In the earlier stages of production, the manufacturing plant **experienced** occasional fluctuations in output due to equipment malfunctions.

> we often use expressions with ago with the past simple:

They **discovered** penicillin a long time ago.

9.4 Future tenses

When we **know about the future** we usually use the present tense:

> **Present simple** for something scheduled:

The meeting starts at 4pm.

> **Present continuous** for plans and arrangements:

They **are having** a meeting later tonight to discuss the issues on the project. The client **is leaving** first thing in the morning.

- ➤ We use *will*:
 - when we express beliefs about the future:

The project **will be** a success. I think the two-step method **will disperse** nanoparticles.

• to mean *want to* or *be willing to*:

I hope the high costs **won't discourage** our client. George says they **will join** our research team.

• to make offers and promises:

l**'ll see** you tomorrow. We**'ll send** you an email.

• to talk about offers and promises:

Tim will be at the meeting. *They will help* with data processing.

> We use *be going to*:

• to talk about plans or intentions:

I'm going to drive to work today. They are going to move the Research Center on-site.

• to make predictions based on evidence we can see:

Be careful! You are going to fall. (= I can see that you might fall.) *Look at those black clouds. I think it's going to rain.* (= I can see that it will rain.)

10 Glossary

Word	Pro	onunciation	Definition	Example sentence
absorption	n	/əbˈzɔ:pʃn/	the process of a liquid, gas or other substance being taken in	Vitamin D is necessary to aid the absorption of calcium from food.
accelerate	v	/əkˈseləreɪt/	to happen faster or earlier; to make something happen faster or earlier	Inflation continues to accelerate .
accessible	adj	/əkˈsesəbl/	that can be reached, entered, used, seen, etc.	These documents are not accessible to the public
accreditation	n	/əˌkredɪˈteɪʃn/	official approval given by an organization stating that somebody/something has achieved a required standard	Industry-driven accreditation serves the interests of industry and may not ensure unbiased or comprehensive regulation.
accuracy	n	/ˈækjərəsi/	the state of being exact or correct; the ability to do something with skill and without making mistakes	They questioned the accuracy of the information in the file
acid	n	/ˈæsɪd/	a chemical, usually a liquid, that contains hydrogen and has a pH of less than seven	The acid burned a hole in her coat.
acquire	v	/əˈkwaɪə/	to gain something by your own efforts, ability or behaviour, to buy something	She has acquired a good knowledge of English.
adapt	v	/əˈdæpt/	to change something in order to make it suitable for a new use or situation	We need technology that can be adapted to suit the needs of the future.
adhesive	n	/ədˈhiːsɪv/	a substance that you use to make things stick together	Use a good waterproof adhesive in addition to the screws.
advance	n	/əd'va:ns/	progress or a development in a particular activity or area of understanding	Recent advances in technology have made the procedure safe.
alloy	n	/ˈælɔɪ/	a metal that is formed by mixing two types of metal together, or by mixing metal with another substance	Brass is an alloy of copper and zinc.
alteration	n	/ˌɔːltəˈreɪʃn/	a change to something that makes it different	They are making some alterations to the house.
ample	adj	/ˈæmpl/	enough or more than enough	There was ample time to get to the airport.
anode	n	/ˈænəʊd/	the electrode in an electrical device where oxidation occurs; the positive electrode in an electrolytic cell and the negative electrode in a battery	This figure shows the beam divergence angle along the anode radius.
appliance	n	/əˈplaɪəns/	a machine that is designed to do a particular thing in the home, such as preparing food, heating or cleaning	Always switch off appliances that are not in use.
application	n	/¦æplɪˈkeɪʃn/	the practical use of something, especially a theory, discovery, etc.	The invention would have a wide range of applications in industry.
			an act of putting or spreading something, such as paint or medical creams, onto something else	It took three applications of paint to cover the graffiti.
array	n	/əˈreɪ/	a group or collection of things or people, often one that is large or impressive	They sat before an array of microphones and cameras.
assess	v	/əˈses/	to make a judgement about the nature or quality of somebody/something	It's difficult to assess the effects of these changes.
atmospheric	adj	/ˌætməsˈferɪk/	related to the earth's atmosphere	Plants are the main source of atmospheric oxygen.
atomic	adj	/əˈtɒmɪk/	relating to atoms or an atom	Electrons and protons are atomic particles.
			relating to the energy that is produced when atoms are split; related to weapons that use this	At the nuclear reprocessing plant they extract plutonium from spent atomic fuel rods.
automate	v	/ˈɔːtəmeɪt/	energy to use machines and computers instead of people to do a job or task	<i>The factory is now fully automated.</i>
autonomous	adj	/ɔːˈtɒnəməs/	that has the technology to drive itself without a person in control	The company bought new autonomous vehicles.
backlog	n	/ˈbæklɒg/	a quantity of work that should have been done already, but has not yet been done	We are faced with a backlog of orders we can't deal with.
battery	n	/ˈbætri/	a device that is placed inside a car engine, clock, radio, etc. and that produces the electricity that makes it work	The bicycle even has a built-in battery charger for a mobile phone.
biofuel	n	/ˈbaɪ.əʊˌfjuː.əl/	a fuel that is made from living things or their waste	We must take care to maintain the balance between the development of

				biofuels and food security, especially in these critical times.
biomedical	adj	/ˌbaɪəʊˈmedɪkl/	relating to how biology affects medicine	She is studying for a doctorate in biomedical sciences.
biomimicry	n	/ˌbaɪ.əʊˈmɪm.ɪ.kr i/	the practice of making technological and industrial design copy natural processes:	The idea behind biomimicry is that nature has already solved the challenges that we are trying to solve.
biotechnology	n	/ˌbaɪ.əʊ.tek'nɒl.ə .dʒi/	the use of living things, especially cells and bacteria, in industrial processes:	They are active in the field of biotechnology.
boiler	n	/ˈbɔɪlə/	a container in which water is heated to provide hot water and heating in a building or to produce steam in an engine	There was a gas boiler mounted on the far wall.
build-up	n	/ˈbɪld ʌp/	an increase in the amount of something over a period of time	The leak led to a slow build-up of carbon dioxide.
calibrate	v	/ˈkælıbreɪt/	to mark units of measurement on an instrument such as a thermometer so that it can be used for measuring something accurately	Our radar was calibrated for 100,000 yards.
capacity	n	/kəˈpæsəti/	the number of things or people that a container or space can hold	The generators each have a capacity of (= can produce) 1,000 kilowatts.
carbon	n	/ˈkɑːbən/	a chemical element	The substance was identified as carbon.
cart	n	/ka:t/	a small vehicle with wheels that can be pushed or pulled along and is used for carrying things	The cart would advance by 3 feet and then repeat the above processing.
cathode	n	/ˈkæθəʊd/	the electrode in an electrical device where reduction occurs; the negative electrode in an electrolytic cell and the positive electrode in a battery	The positive space charge of the ion layer near the cathode will shield the electric field.
charge	n	/tʃaːdʒ/	the amount of electricity that is put into a battery or carried by a substance	The electron has a negative charge .
circuit	n	/ˈsɜːkɪt/	the complete path of wires and equipment along which an electric current flows	A defect was found in the electrical circuit.
combustion	n	/kəm'bʌstʃən/	the process of burning	Poisonous gases are produced during fossil fuel combustion .
compliant	adj	/kəm'plaıənt/	in agreement with a set of rules	This site is HTML compliant.
component	n	/kəm'pəʊnənt/	one of several parts of which something is made	Nitrogen is the main component of air.
conduct	v	/kənˈdʌkt/	to allow heat or electricity to pass along or through it	Copper conducts electricity well.
conductivity	n	/ˌkɒndʌkˈtɪvəti/	the quality of being able to conduct electricity, heat, etc.	Aluminium has good heat conductivity .
controller	n	/kənˈtrəʊlə/	a device that controls or regulates a machine or part of a machine	The assisted braking controller is integrated into the dash.
conversion	n	/kən'v3ː∫n/	the act or process of changing something from one form, use or system to another	No conversion from analogue to digital data is needed.
conveyor	n	/kənˈveɪə/	a continuous moving band used for transporting goods	The products are labelled as they pass by on the conveyor .
counterpart	n	/ˈkaʊntəpɑːt/	a person or thing that has the same position or function as somebody/something else in a different place or situation	European environmentalists have their counterparts in the US.
criterion	n	/kraıˈtɪəriən/	a standard or principle by which something is judged, or with the help of which a decision is made	She failed to meet the strict selection criteria .
current	n	/ˈkʌrənt/	the flow of electricity through a wire, etc.	Check all your wiring before switching on the current .
cylinder	n	/ˈsɪlɪndə/	the hollow tube in an engine, like a cylinder in shape, inside which the piston moves	The engine isn't firing on all its cylinders .
database	n	/ˈdeɪtəbeɪs/	an organized set of data that is stored in a computer and can be looked at and used in various ways	We're trying to create our own computerized database .
detachment	n	/dɪˈtæt∫mənt/	the state of not being involved in something in an emotional or personal way	She felt a sense of detachment from what was going on.
disperse	v	/dɪˈspɜːs/	to move apart and go away in different directions; to make somebody/something do this	The crowd dispersed quickly.
dispose of	v	/dɪˈspəʊz/	to get rid of somebody/something that you do not want or cannot keep	Radioactive waste must be disposed of safely.
distinguish	v	/dı'stıŋgwı∫/	to recognize the difference between two people or things	English law clearly distinguishes between murder and manslaughter.
distribute	v	/dɪˈstrɪbjuːt/	to give things to a large number of people	Viruses are often distributed via email.

durable	adj	/ˈdjʊərəbl/	likely to last for a long time without breaking or getting weaker	Painted steel is likely to be less durable than other kinds.
effective	adj	/ɪˈfektɪv/	producing the result that is wanted or intended; producing a successful result	The system has proved less effective than hoped.
efficient	adj	/ɪˈfɪʃnt/	doing something in a good, careful and complete way with no waste of time, money or energy	Which software is the most efficient at processing the data?
electrode	n	/ɪˈlektrəʊd/	either of two points (or terminals) by which an electric current enters or leaves a battery or other electrical device	Thus, elemental carbon was released from the electrodes during arcing.
electrolyte	n	/ɪˈlektrəlaɪt/	a liquid that an electric current can pass through, especially in an electric cell or battery	Solid-state cells differ from conventional lithium-ion batteries in their use of a glass or ceramic electrolyte , instead of a liquid composed of lithium salts.
electronics	n	/ıˌlekˈtrɒnɪks/	the use of electronic technology, especially in developing new equipment	Their company merged with a Japanese electronics giant.
electron	n	/ɪˈlektrɒn/	a very small piece of matter (= a substance) with a negative electric charge, found in all atoms	If the free electron remains free after the collision, we speak of a free free collision.
employ	v	/ımˈplɔɪ/	to use something such as a skill, method, etc. for a particular purpose	He criticized the repressive methods employed by the country's government.
enhance	v	/ınˈhaːns/	to increase or further improve the good quality, value or status of somebody/something	The new initiative will enhance our ability to respond to threats abroad.
extract	v	/ıkˈstrækt/	to remove or obtain a substance from something, for example by using an industrial or a chemical process	The Egyptians used a primitive form of distillation to extract the essential oils from plants.
			to obtain information, money, etc., often by taking it from somebody who is unwilling to give it	Journalists managed to extract all kinds of information about her private life.
fabricate	v	/ˈfæbrɪkeɪt/	to make or produce goods, equipment, etc. from various different materials	These specialized chips will be fabricated by Mykrokorp Inc.
facility	n	/fəˈsɪləti/	buildings, services, equipment, etc. that are provided for a particular purpose	Recycling <i>facilities</i> are provided.
faulty	adj	/ˈfɔːlti/	not perfect; not working or made correctly	The accident was caused by a faulty signal.
ferromagnetic	adj	/ˌferəʊmæg'netɪ k/	having the kind of magnetism that iron has	We mention that in ferromagnetic materials the permeability depends on the magnetic induction.
fleet	n	/fli:t/	a group of planes, buses, taxis, etc. travelling together or owned by the same organization	There were plans to modernize the tram and bus fleet .
flow	n	/fləʊ/	the steady and continuous movement of something/somebody in one direction	The whole operation depends on a steady flow of electricity.
fluctuation	n	/ˌflʌktʃuˈeɪʃn/	one of several changes in size, amount, quality, etc. that happen frequently, especially from one extreme to another; the act of changing frequently like this	Scientists have concluded that temperature fluctuations may increase the spread of infectious diseases.
fluid	n	/ˈfluːɪd/	a liquid; a substance that can flow	Retaining excess fluid could be a problem.
force	n	/fɔːs/	physical strength, especially as shown when something hits something else	You have to apply some force to move the lever.
forklift	n	/ˈfɔrkˌlift/	a vehicle with two bars in the front for moving and lifting heavy goods	He put himself through college by operating a forklift at night.
fuel	n	/ˈfjuːəl/	any material that produces heat or power, usually when it is burnt	Most of the houses are heated with solid fuel .
fuse	n	/fju:z/	a small wire or device inside a piece of electrical equipment that breaks and stops the current if the flow of electricity is too strong	Check whether a fuse has blown.
gain	v	/geɪn/	to obtain an advantage or benefit from something or from doing something	The industry will gain enormously from the new proposals.
generate	v	/ˈdʒenəreɪt/	to produce energy, especially electricity	Living cells generate energy from food.
geothermal	adj	/ˌdʒi:əʊˈθɜːml/	connected with the natural heat of rock deep in the ground	As the authors point out, geothermal energy is, at best, a semi-renewable resource, akin to 'mining' heat from the ground.
guidance	n	/'gaɪdns/	the process of controlling the direction of a rocket, etc., using electronic equipment	Almost all missiles contain some form of guidance and control mechanism and are therefore often referred to as guided missiles.
harness	v	/ˈhɑːnɪs/	to control and use the force or strength of something to produce power or to achieve something	How can this energy be harnessed effectively for the good of humankind?

hazardous	adj	/ˈhæzədəs/	involving risk or danger, especially to somebody's health or safety	They endured a hazardous journey through thickening fog.
hybrid	adj	/ˈhaɪbrɪd/	using two different types of power, especially petrol or diesel and electricity	The hybrid aircraft can fly like a plane and take off and land like a helicopter.
hydrogen	n	/ˈhaɪdrədʒən/	a gas that is the lightest of all the elements. It combines with oxygen to form water.	Alternatives such as wind, solar, hydrogen and new nuclear are years away.
hydropower	n	/ˈhaɪdrəʊpaʊə/	electricity produced using the power of water	The technologies have included solar, wind, biomass and small hydropower .
hydroxide	n	/haɪˈdrɒksaɪd/	a chemical consisting of a metal and a combination of oxygen and hydrogen	Diluted solutions of zinc and copper chloride and sodium hydroxide were used.
incinerator	n	/ɪnˈsɪnəreɪtə(r)/	a container that is closed on all sides for burning waste at high temperatures	Veolia executives say burning e- cigarettes' lithium batteries can damage their incinerators .
induction	n	/mˈdʌkʃn/	the process by which electricity or magnetism passes from one object to another without them touching	Then a high-frequency current is run through a copper coil around the quartz tube, which heats the graphite crucible through induction .
inductive	adj	/mˈdʌktɪv/	connected with the induction of electricity	In their analysis of decarbonization methods, DC-MUSE researchers identified pathways including resistive, microwave, and inductive heating strategies.
input	n	/'ınput/	a place or means for electricity, data, etc. to enter a machine or system	Where is the audio input on the computer?
inspect	v	/ınˈspekt/	to look closely at something/somebody, especially to check that everything is as it should be	Make sure you inspect the goods before signing for them.
inspections	v	/ınˈspek∫n/	the act of looking closely at something/somebody, especially to check that everything is as it should be	Engineers carried out a thorough inspection of the track.
insulation	n	/ˌɪnsjuˈleɪʃn/	the act of protecting something with a material that prevents heat, sound, electricity, etc. from passing through; the materials used for this	Better insulation of your home will help to reduce heating bills.
interference	n	/ˌɪntəˈfɪərəns/	interruption of a radio signal by another signal on a similar wavelength, causing extra noise that is not wanted	It was hard to hear the radio program because of all the interference .
intermittent	adj	/ˌɪntəˈmɪtənt/	stopping and starting often over a period of time, but not regularly	A day of intermittent rainstorms followed.
intricate	adj	/ˈɪntrɪkət/	having a lot of different parts and small details that fit together	The building has intricate geometric designs on several of the walls.
ion	n	/ˈaɪən/	an atom or a molecule with a positive or negative electric charge caused by its losing or gaining one or more electrons	Chloride ions can corrode vehicles and infrastructure.
kinematics	n	/ˌkɪnəˈmætɪk/	a branch of dynamics that deals with aspects of motion apart from considerations of mass and force	Seatmakers call this kinematics the parts that move.
bill of lading	n	/,bil əv 'leidiŋ/	a list giving details of the goods that a ship, etc. is carrying	The report, which is more than 200 pages long, includes copies of contracts between North Korean and Syrian companies as well as bills of lading indicating the types of materials shipped.
lead	n	/led/	a chemical element (Pb)	Lead is a heavy, soft grey metal, used especially in the past for water pipes or to cover roofs.
leak	v	/liːk/	to allow liquid or gas to get in or out through a small hole	A pipe was leaking in her hotel room.
leverage	v	/ˈliːvərɪdʒ/	to get as much advantage or profit as possible from something that you have	This system will help you to leverage your time so that you get more done.
lithium	n	/ˈlɪθiəm/	a chemical element	Lithium is a soft, very light, silver- white metal used in batteries and alloys.
load	n	/ləud/	something that is being carried (usually in large amounts) by a person, vehicle, etc.	The trucks waited at the warehouse to pick up their loads .
	v	/ləud/	to put a large quantity of things or people onto or into something	Can you help me load the dishwasher?

maintain	v	/mein'tein/	to keep a building, a machine, etc. in good condition by checking or repairing it regularly	The house is large and difficult to maintain .
maintenance	n	/ˈmeɪntənəns/	the act of keeping something in good condition by checking or repairing it regularly	The school pays for heating and the maintenance of the buildings.
malfunction	v	/ˌmælˈfʌŋkʃn/	to fail to work correctly	He was killed when his parachute malfunctioned .
	n	/ˌmælˈfʌŋkʃn/	failure of a machine, etc. to work correctly	There was no evidence of technical malfunction.
manufacture	v	/ˌmænju'fækt∫ə(r)/	to make goods in large quantities, using machines	This company manufactures the equipment used to make contact lenses.
	n	/ˌmænjuˈfæktʃə(r)/	the process of producing goods in large quantities	The amount of recycled glass used in manufacture doubled in five years.
mass	n	/mæs/	the quantity of material that something contains	As a black hole gives off particles and radiation, it will lose mass .
matter	n	/ˈmætə(r)/	a substance or things of a particular sort	Add plenty of organic matter to improve the soil.
meticulously	adv	/məˈtɪkjələsli/	in a way that pays careful attention to every detail	She checked the painting meticulously for any damage.
mimetic	adj	/mɪˈmetɪk/	copying the behaviour or appearance of somebody/something else	Art is a mimetic representation of reality.
mimic	v	/ˈmɪmɪk/	to look or behave like something else	The robot was programmed to mimic a series of human movements.
monitor	v	/ˈmɒnɪtə(r)/	to watch and check something over a period of time in order to see how it develops, so that you can make any necessary changes	The authorities will continue to monitor the situation.
nanocomposit e	n	/ˌnanəʊkɒm'pəz ɪt/	a composite material with features measured in nanometers	Other nanocomposites —materials put together molecule by molecule— could be used to coat implants so that the body doesn't react to them.
nanofibre	n	/ˈnanə(ʊ)ˌfʌɪbə/	one-dimensional nanomaterial of fiber shape with a diameter in the range of tens to hundreds of nanometers	To circumvent this problem fast degrading nanofibers can be combined with slow degrading fibers.
nanomaterial	n	/ˈnænəʊməˌtɪərɪ əl/	any material that has an average particle size of between 1 and 100 nanometres	General safety aspects of handling nanomaterials have been briefly addressed.
nanoparticle	n	/ˈnænəʊpɑ:tɪkl/	a piece of matter less than 100 nanometres long	The nanoparticle has a unique size dependent magnetic, optical, and electrical property, which makes it a suitable candidate in the field of material science.
nanoscale	adj	/'nænəuskeɪl/	of a size that can be measured in nanometres	Their technique takes advantage of the bonds that form between atoms in a nanoscale channel of the new transistor.
nanosensor	n	/'nænəusensə/	sensitive material used to transmit chemical, physical, or biological information about nanomaterials and recognition molecules	Nanosensors in agriculture are used to detect the humidity of soil, pesticide residue, nutrient requirements, and crop pest identification.
nanotechnolog y	n	/,nænəutek'nɒlə dʒi/	the branch of technology that deals with structures that are less than 100 nanometres long	Nanotechnology is the blanket tern used to describe the precision manufacture of materials and structures of molecular dimensions.
obstacle	n	/ˈɒbstəkl/	something that blocks you so that movement, going forward, or action is prevented or made more difficult	The biggest obstacle in our way was a tree trunk in the road.
obstructions	n	/əbˈstrʌkʃn/	something that blocks a road, an entrance, etc.	It is my job to make sure that all pathways are clear of obstructions .
occupation	n	/,pkju'peı∫n/	a job or profession	Please state your name, age and occupation below.
operate	v	/ˈɒpəreɪt/	to work in a particular way	Most domestic freezers operate at below –18°C.
			to use or control a machine or make it work	The doors can be manually operated in the event of fire.
overabundance	n	/,əʊvərəˈbʌndəns/	a supply or amount that is greater than required	Due to the overabundance of casualties, the hospitals were overwhelmed.
oxide	n	/ˈɒksaɪd/	a compound of oxygen and another chemical element	Most patients were intubated and anesthetized with nitrous oxide and oxygen during catheterization.

pallet	n	/'pælət/	a flat wooden or metal platform on which goods are stored so that they can be lifted and moved using a forklift truck	The warehouse will hold more than 90,000 pallets storing 30 million Easter eggs.
panel	n	/'pænl/	a square or rectangular piece of wood, glass or metal that forms part of a larger surface such as a door or wall	One of the glass panels in the front door was cracked.
patent	n	/'pætnt/ /'peɪtnt/	an official right to be the only person to make, use or sell a product or an invention; a document that proves this	The device was protected by patent .
pathway	n	/'pa:0we1/	a track that serves as a path	They came out of the woods and onto a pathway .
pivotal	adj	/ˈpɪvətl/	of great importance because other things depend on it	She played a pivotal role in the civil rights movement.
plant	n	/pla:nt/	a factory in which a particular product is made or power is produced	Two more car-assembly plants were closed by the strike.
plug-in	adj	/'plʌg ɪn/	able to be connected to an electricity supply using a plug	Component makers are excited by the development of plug-in electric cars.
pneumatic	adj	/njuːˈmætɪk/	operated by air pressure	Our car has pneumatic brakes.
premises	n	/ˈpremɪsɪz/	the building and land near to it that a business owns or uses	These premises are regularly checked by security guards.
principle	n	/ˈprɪnsəpl/	a basic idea or rule that explains or controls how something happens or works	The machine works according to the principle of electromagnetic conduction.
processor	n	/ˈprəʊsesə(r)/	a part of a computer that controls all the other parts of the system	Therefore, to plan the elementary motions it is possible to use a multi processor system.
prompt	adj	/prompt/	done without delay	Prompt action was required as the fire spread.
	n	/prompt/	an instruction given to an artificial intelligence by a human using natural language rather than computer language	AI prompts are essentially commands that the AI model can understand.
prosthetic	adj	/prɒsˈθetɪk/	relating to an artificial body part, such as an arm, foot, or tooth, that replaces a missing part	People have learned to ski, kayak, and run marathons with their prosthetic limbs.
protocol	n	/ˈprəʊtəkɒl/	a set of rules that control the way data is sent between computers	It should be noticed that the remote system uses the communication protocol that the hand controller uses as well.
prototype	n	/ˈprəʊtətaɪp/	the first design of something from which other forms are copied or developed	Scientists have developed a working prototype for the machine.
ratio	n	/ˈreɪʃiəʊ/	the relationship between two groups of people or things that is represented by two numbers showing how much larger one group is than the other	What is the ratio of men to women in the department?
recharge	v	/ˌriːˈtʃaːdʒ/	to fill a battery with electrical power; to be filled with electrical power	The drill takes about three hours to recharge .
refine	v	/rɪˈfaɪn/	to improve something by making small changes to it	She has refined her playing technique over the years.
reject	v	/rɪˈdʒekt/	to refuse to accept or consider something	The proposal was firmly rejected .
reliability	n	/rɪˌlaɪəˈbɪləti/	the quality of being likely to be correct or true	The reliability of these results has been questioned.
reliance	n	/rɪˈlaɪəns/	the state of needing somebody/something in order to survive, be successful, etc.; the fact of being able to rely on somebody/something	Such learning methods encourage too great a reliance upon the teacher.
repetitive	adj	/rɪˈpetətɪv/	repeated many times	Through repetitive training, the controller obtains knowledge about the system and the tracking length is elongated gradually.
replenishment	n	/rı'plenı∫mənt/	the act of making something full again by replacing what has been used	Computerization has enabled the automatic replenishment of stock.
resilience	n	/rīˈzīliəns/	the ability of a substance to return to its original shape after it has been bent, stretched or pressed	The plant fibre has incredible strength and resilience .
responsive	adj	/rɪˈspɒnsɪv/	saying or doing something as a reaction to something or someone, especially in a quick or positive way	The car's transmission is much smoother and more responsive that previous models.
retrieve	v	/rɪˈtriːv/	to bring or get something back, especially from a place where it should not be	She bent to retrieve her comb from the floor.
robotics	n	/rəʊˈbɒtɪks/	the science of designing and operating robots	The field of robotics has seen many exciting developments in the last decade.

large-scale	adj	/ˌlaːdʒ ˈskeɪl/	involving many people or things, especially over a wide area	Large areas of the forest will be cleared for ranching as part of a large-scale development plan.
separator	n	/ˈsepəreɪtə(r)/	a machine for separating things	For the negative electrode, magnesium is used, while the electrolyte is composed of magnesium acetate, and cellulose is used for the separator .
shaft	n	/ʃaːft/	a metal bar that joins parts of a machine or an engine together, enabling power and movement to be passed from one part to another	A propeller shaft for a small yacht is made of a solid steel bar 100mm in diameter.
slopes	n	/sləup/	a surface that lies at an angle to the horizontal	The roof is at a slope (= at an angle
soar	v	/sɔ:(r)/	so that some points on it are higher than others if the value, amount or level of something soars, it rises very quickly	to a horizontal surface) of 30°. Air pollution will soon soar above safety levels.
solar	adj	/ˈsəʊlə(r)/	of or from the sun, or using the energy from the sun to produce electric power	They are searching for intelligent life forms in other solar systems.
spark	v	/spa:k/	to cause something to start or develop,	Winds brought down power lines,
Spark	v		especially suddenly	sparking a fire. Nylon brushes are not recommended
static electricity	n	/,stætık ı,lek'trısəti/	electricity that gathers on or in an object that is not a conductor of electricity	because they are likely to create static electricity.
sulphuric (AE sulfuric) acid	n	/sʌl,fjuərɪk 'æsɪd/	a strong acid with no color	A concentrated solution of ammonium thiocyanate was mixed with 50 % sulfuric acid and kept on ice.
supplier	n	/səˈplaɪə(r)/	a person or company that supplies goods	You will need to be able to deal with both customers and suppliers .
surveillance	n	/ssː'veɪləns/	supervision or inspection	The vehicle was said to be fitted with advanced surveillance equipment.
terrain	n	/təˈreɪn/	used to refer to an area of land when you are mentioning its natural features, for example, if it is rough, flat, etc.	The car handles particularly well on rough terrain .
tow	v	/təʊ/	to pull a car, boat, etc. behind another vehicle, using a rope or chain	Our car was towed away by the police.
track	v	/træk/	to follow the movements of somebody/something, especially by using special electronic equipment	Media consultants can track the eye movements of people who are watching TV commercials.
trolley	n	/'troli/	affordable piece of equipment for many assembly, manufacturing, and warehouse environments as it can be used to transport a wide variety of products and materials	Using trolleys increases warehouse safety and efficiency by allowing employees to move items with ease through the warehouse space.
troubleshoot	v	/ˈtrʌblʃuːt/	to discover why something does not work effectively and help to improve it	A top German engineer has been appointed to troubleshoot the cause of the accident.
tug	n	/tʌg/	a type of industrial equipment used to move large, heavy loads	On the other hand, an electric tug is designed to push, pull, steer and position heavy-wheeled loads.
utilise	v	/ˈjuːtəlaɪz/	to use something, especially for a practical purpose	Vitamin C helps the body utilize the iron present in your body.
validate	v	/'vælıdeıt/	to state officially that something is useful and of an acceptable standard	The data is validated automatically by the computer after it has been entered.
valve	n	/vælv/	a device for controlling the flow of a liquid or gas, letting it move in one direction only	The plumber will fit some new safety valves .
vast	adj	/va:st/	extremely large in area, size, amount, etc.	They sell a vast array of products.
versatility	n	/ˌvɜːsəˈtɪləti/	the quality of having many different uses	Printers offer surprising versatility for the money.
vessel	n	/'vesl/	a container used for holding liquids, such as a bowl, cup, etc.	We used bowls, pots, bottles, pitchers – any vessels we could find.
voltage	n	/ˈvəʊltɪdʒ/	electrical force measured in volts	The increase of voltage resulted in a sharp increase of the radiation power.
warehouse	n	/ˈweəhaʊs/	a building where large quantities of goods are stored, especially before they are sent to shops to be sold	He's a warehouse manager for an import company.
weld	v	/weld/	to join pieces of metal together by heating their edges and pressing them together	All the parts of the sculpture have to be welded together.
workstation	n	/ˈwɜːksteɪʃn/	an intelligent terminal or personal computer usually connected to a computer network	In the first level, only one workstation is needed and all three components are assembled there.

11 References

The reference list contains sources that the authors of this textbook used for English language teaching purposes. These are authentic texts, drawings, diagrams or photographs from textbooks, journal articles, encyclopaedias and other sources available on the Internet. Some texts are slightly modified or abridged for the purpose of efficient language teaching. Images that are not part of the authentic texts have been designed using Canva online graphic design tool.

Hewings, Martin. 2015. *Advanced Grammar in Use.* Cambridge University Press. Cambridge. Murphy, Raymond. 1994. *English Grammar in Use.* Cambridge University Press. Cambridge.

Unit 1

Collective Nouns. <u>https://www.merriam-webster.com/dictionary/collective%20noun</u>. Date accessed 7 Aug. 2023. Concrete Nouns vs. Abstract Nouns. https://www.grammarly.com/blog/concrete-vs-abstract-nouns/. Date accessed 7 Aug. 2023.

Countable and Uncountable nouns – Grammar Rules and Examples. https://tutors.com/lesson/countable-and-uncountable-nouns. Date accessed 7 Aug. 2023.

Determiner. https://www.merriam-webster.com/dictionary/determiner. Date accessed 7 Aug. 2023.

Noun. https://www.merriam-webster.com/dictionary/noun. Date accessed 7 Aug. 2023.

Plural nouns: Rules and Examples. https://www.grammarly.com/blog/plural-

nouns/?gclid=EAIaIQobChMIx5_AxKnO_AIVhtCyCh0-CwnGEAAYASAAEgKwuPD_BwE&gclsrc=aw.ds. Date accessed 7 Aug. 2023.

Uncountable nouns. *https://www.englishclub.com/grammar/nouns-countable-un.htm*. Date accessed 7 Aug. 2023. What Can You Do With A Mechatronics Degree.

https://www.calu.edu/academics/undergraduate/bachelors/mechatronics-engineering-technology/what-can-you-do-with-a-mechatronics-degree.aspx. Date accessed 7 Aug. 2023.

What is a Mechatronics Degree. https://www.calu.edu/academics/undergraduate/bachelors/mechatronics-engineering-technology/what-is-a-mechatronics-degree.aspx. Date accessed 7 Aug. 2023.

Image: https://media.istockphoto.com/id/1439352646/vector/manufacturing-and-

robotics.jpg?s=612x612&w=0&k=20&c=AmUFCE2IhEqGix41-lr5YnmspuWXRjJpf0KT78PKKn8=

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/PennWest_Lockup_California_FINAL_SM.svg/1200 px-PennWest_Lockup_California_FINAL_SM.svg.png

Unit 2

Das, Santosh. *Electric Circuit - Types of Electric Circuit*. https://www.electronicsandyou.com/blog/electric-circuit-types-of-electric-circuit.html. Date accessed 7 Aug. 2023.

Dunn, Marian; Howey, David et al. "The Future of Cars: Battery Power." *English for Mechanical Engineering*, edited by Terry Phillips, Garnet Publishing Ltd., 2010, p. 56-59.

Nichols, Dave. *Different Types of EV- Batteries*. https://www.greencars.com/greencars-101/different-types-of-ev-batteries_Date accessed 7 Aug. 2023.

What are Lithium-Ion Batteries? https://ul.org/research/electrochemical-safety/getting-started-electrochemical-safety/what-are-lithium-ion. Date accessed 7 Aug. 2023.

Slika: https://www.freepik.com/premium-vector/super-car-outline-black-white-vector-design_33859676.htm. Date accessed 7 Aug. 2023.

Unit 3

Brieger, Nick; Pohl Alison. "Production 1." *Technical English: Vocabulary and Grammar*, MC/Summertown ELT, 2007, p. 6.

Brieger, Nick; Pohl Alison. "Present tenses." *Technical English: Vocabulary and Grammar*, MC/Summertown ELT, 2007, p. 66.

Versabox. *AGV, AIV, AMR, SGV, LGV – what are these?* https://versabox.eu/agv-aiv-amr-sgv-lgv-what-are-these/. Date accessed 7 Aug. 2023.

Unit 4

Bošnjak Terzić, Brankica. 2009. *Study Technical English 1*. Basic Concepts of Electricity. Školska knjiga. Zagreb. Static Buildup Mechanism. https://www.keyence.com/ss/products/static/resource/feature/static.jsp. Date accessed 7 Aug. 2023.

What are the Causes of Static Electricity in Manufacturing? https://fraser-antistatic.com/knowledge-centre/faqs/causes-of-static-electricity-in-manufacturing/. Date accessed 7 Aug. 2023.

Unit 5

History of Nanotechnology. https://en.wikipedia.org/wiki/History_of_nanotechnology. Date accessed 4 Jun. 2024. Past tense. https://learnenglish.britishcouncil.org/grammar/english-grammar-reference/past-tense. Date accessed 7 Aug. 2023.

Unit 6:

Dunn, Marian; Howey, David et al. "Engineering Achievements, Codes and Standards." *English for Mechanical Engineering*, edited by Terry Phillips, Garnet Publishing Ltd., 2010, p.19. Midhuna Krishna, M. *Artificial Muscle Systems: Mechatronic Solutions for Biomimetic Motion and Force Generation*. <u>https://www.linkedin.com/pulse/artificial-muscle-systems-mechatronic-solutions-biomimetic-m-yhpxc?trk=public post main-feed-card feed-article-content</u>. Date accessed 28 May 2024. Nascimento, Jennifer. *Understanding the English Perfect Tenses*.

https://www.englishoutsidethebox.com/2017/01/17/understanding-english-perfect-tenses/. Date accessed 7 Aug. 2023.

Shrives, Craig. *Perfect tenses*. https://www.grammar-monster.com/glossary/perfect_tense.htm. Date accessed 7 Aug. 2023.

Picture: https://hackaday.com/tag/artificial-muscle/. Date accessed 7 Aug. 2023.

Unit 7

Talking about the future. <u>https://learnenglish.britishcouncil.org/grammar/english-grammar-reference/talking-about-future</u>. Date accessed 7 Aug. 2023.

Unit 8

Classification of sensors in Mechatronics Types: Mechatronics Lectures <u>https://www.youtube.com/watch?v=IwQjsjpjZCk</u> Date accessed 6 Jun 2024.

Word bank

https://dictionary.cambridge.org/.Date accessed 10 Feb. 2024.

https://www.merriam-webster.com/. Date accessed 10 Feb. 2024.

https://www.oxfordlearnersdictionaries.com/. Date accessed 10 Feb. 2024.

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/nanofiber. Date accessed 10 Feb. 2024. https://www.sciencedirect.com/topics/chemical-engineering/nanomaterials. Date accessed 10 Feb. 2024.

https://www.sciencedirect.com/topics/materials-science/nanosensor. Date accessed 10 Feb. 2024.

https://www.spaceguard.co.uk/warehouse/what-are-the-benefits-of-trolleys-mobile-workstations-in-the-

warehouse/ . Date accessed 10 Feb. 2024.

https://www.mastermover.com/material-handling/electric-tugs-an-alternative-to-forklift-trucks. Date accessed 10 Feb. 2024.